1,745 research outputs found

    The NASA high-speed turboprop program

    Get PDF
    Technology readiness for Mach 0.7 to 0.8 turboprop powered aircraft with the potential for fuel savings and DOC reductions of up to 30 and 15 percent respectively relative to current in-service aircraft is addressed. The areas of propeller aeroacoustics, propeller structures, turboprop installed performance, aircraft cabin environment, and turboprop engine and aircraft studies are emphasized. Large scale propeller characteristics and high speed propeller flight research tests using a modified testbed aircraft are also considered

    Satellite data relay and platform locating in oceanography. Report of the In Situ Ocean Science Working Group

    Get PDF
    The present and future use of satellites to locate offshore platforms and relay data from in situ sensors to shore was examined. A system of the ARGOS type will satisfy the increasing demand for oceanographic information through data relay and platform location. The improved ship navigation provided by the Global Positioning System (GPS) will allow direct observation of currents from underway ships. Ocean systems are described and demand estimates on satellite systems are determined. The capabilities of the ARGOS system is assessed, including anticipated demand in the next decade

    A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Get PDF
    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the strength of the negative reactivity feedback in the UTVR, it is found that external reactivity insertions alone are inadequate for bringing about significant power level changes during normal reactor operations. Additional methods of reactivity control such as variations in the gaseous fuel mass flow rate, are needed to achieve the desired power level oontrol

    The dilaton-dominated supersymmetry breaking scenario in the context of the non-minimal supersymmetric model

    Get PDF
    The phenomenological consequences of the dilaton-type soft supersymmetry breaking terms in the context of the next to minimal supersymmetric standard model are investigated. We always find a very low top quark mass. As a consequence such string vacua are excluded by recent experimental results. The viability of the solution of the μ\mu term through the introduction of a gauge singlet field is also briefly discussed.Comment: 10 pages,LATE

    Investigation of Blade-row Flow Distributions in Axial-flow-compressor Stage Consisting of Guide Vanes and Rotor-blade Row

    Get PDF
    A 30-inch tip-diameter axial-flow compressor stage was investigated with and without rotor to determine individual blade-row performance, interblade-row effects, and outer-wall boundary-layer conditions. Velocity gradients at guide-vane outlet without rotor approximated design assumptions, when the measured variation of leaving angle was considered. With rotor in operation, Mach number and rotor-blade effects changed flow distribution leaving guide vanes and invalidated design assumption of radial equilibrium. Rotor-blade performance correlated interpolated two-dimensional results within 2 degrees, although tip stall was indicated in experimental and not two-dimensional results. Boundary-displacement thickness was less than 1.0 and 1.5 percent of passage height after guide vanes and after rotor, respectively, but increased rapidly after rotor when tip stall occurred

    Technicolor Theories with Negative S

    Full text link
    We show that the pseudo Nambu--Goldstone boson contribution to the Peskin--Takeuchi electroweak parameter SS can be negative in a class of technicolor theories. This negative contribution can be large enough to cancel the positive techni-hadron contribution, showing that electroweak precision tests alone cannot be used to rule out technicolor as the mechanism of electroweak symmetry breaking.Comment: (LBL-32893, UCB-PTH 92/34, 10 pages; we added a discussion of uncertainties, fine-tuning, and SU(2) asymptotic freedom; the conclusions are unchanged.

    Deformed dimensional regularization for odd (and even) dimensional theories

    Full text link
    I formulate a deformation of the dimensional-regularization technique that is useful for theories where the common dimensional regularization does not apply. The Dirac algebra is not dimensionally continued, to avoid inconsistencies with the trace of an odd product of gamma matrices in odd dimensions. The regularization is completed with an evanescent higher-derivative deformation, which proves to be efficient in practical computations. This technique is particularly convenient in three dimensions for Chern-Simons gauge fields, two-component fermions and four-fermion models in the large N limit, eventually coupled with quantum gravity. Differently from even dimensions, in odd dimensions it is not always possible to have propagators with fully Lorentz invariant denominators. The main features of the deformed technique are illustrated in a set of sample calculations. The regularization is universal, local, manifestly gauge-invariant and Lorentz invariant in the physical sector of spacetime. In flat space power-like divergences are set to zero by default. Infinitely many evanescent operators are automatically dropped.Comment: 27 pages, 3 figures; v2: expanded presentation of some arguments, IJMP

    Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability

    Full text link
    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter KK. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the damping rings.Comment: 10 pages, 7 figure
    corecore